Assessing the Anti-Obesity Potential of Lactococcus lactis subsp. lactis CAB701: Modulation of Adipocyte Differentiation and Lipid Metabolism in In Vitro and In Vivo Models

Probiotics Antimicrob Proteins. 2023 Dec 8. doi: 10.1007/s12602-023-10198-9. Online ahead of print.

Abstract

In this study, the potential anti-obesity effects of Lactococcus lactis subsp. lactis CAB701, a probiotic strain isolated from cabbage, were investigated using in vitro and in vivo assays. L. lactis subsp. lactis CAB701 inhibited adipocyte differentiation of 3T3-L1 cells by 67%. In an in vivo model of high-fat diet-induced obese mice, treatment with L. lactis subsp. lactis CAB701 markedly reduced body weight and peri-epididymal fat mass, and significantly reduced serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol levels. Molecular analysis revealed a significant modulation of key genes and proteins involved in lipid metabolism and adipogenesis. Specifically, fatty acid synthase and peroxisome proliferator-activated receptor gamma were significantly downregulated in peri-epididymal adipose tissue, alluding to the molecular mechanism underlying the anti-obesity effects exerted by L. lactis subsp. lactis CAB701. Furthermore, histological examination revealed a significant reduction in adipocyte size in the treated group, indicating effective adipose tissue remodeling. Our findings suggest that L. lactis subsp. lactis CAB701 mediates anti-obesity effects through the modulation of critical molecular markers and lipid profiles. L. lactis subsp. lactis CAB701 thus represents a promising candidate for combating obesity and related metabolic disorders.

Keywords: 3T3-L1; Adipocyte differentiation; Anti-obesity; Body weight; High-fat diet; Probiotics.