The authors demonstrate the feasibility of technological innovation for personalized medicine in the context of drug-induced arrhythmia. The authors use atomistic-scale structural models to predict rates of drug interaction with ion channels and make predictions of their effects in digital twins of induced pluripotent stem cell-derived cardiac myocytes. The authors construct a simplified multilayer, 1-dimensional ring model with sufficient path length to enable the prediction of arrhythmogenic dispersion of repolarization. Finally, the authors validate the computational pipeline prediction of drug effects with data and quantify drug-induced propensity to repolarization abnormalities in cardiac tissue. The technology is high throughput, computationally efficient, and low cost toward personalized pharmacologic prediction.
Keywords: digital twins; dofetilide; hERG; iPSC-CMs; moxifloxacin.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.