Background: The accurate identification of patients with high cardiovascular risk in suspected myocardial infarction (MI) is an unmet clinical need. Therefore, we sought to investigate the prognostic utility of a multi-biomarker panel with 29 different biomarkers in in 748 consecutive patients with symptoms indicative of MI using a machine learning-based approach.
Methods: Incident major cardiovascular events (MACE) were documented within 1 year after the index admission. The selection of the best multi-biomarker model was performed using the least absolute shrinkage and selection operator (LASSO). The independent and additive utility of selected biomarkers was compared to a clinical reference model and the Global Registry of Acute Coronary Events (GRACE) Score, respectively. Findings were validated using internal cross-validation.
Results: Median age of the study population was 64 years. At 1 year of follow-up, 160 cases of incident MACE were documented. 16 of the investigated 29 biomarkers were significantly associated with 1-year MACE. Three biomarkers including NT-proBNP (HR per SD 1.24), Apolipoprotein A-I (Apo A-I; HR per SD 0.98) and kidney injury molecule-1 (KIM-1; HR per SD 1.06) were identified as independent predictors of 1-year MACE. Although the discriminative ability of the selected multi-biomarker model was rather moderate, the addition of these biomarkers to the clinical reference model and the GRACE score improved model performances markedly (∆C-index 0.047 and 0.04, respectively).
Conclusion: NT-proBNP, Apo A-I and KIM-1 emerged as strongest independent predictors of 1-year MACE in patients with suspected MI. Their integration into clinical risk prediction models may improve personalized risk stratification.
Keywords: Acute coronary syndrome; Biomarker; Chest pain; NT-proBNP; Risk prediction.
© 2023. The Author(s).