Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase

Genome Res. 2023 Dec 27;33(12):2108-2118. doi: 10.1101/gr.278273.123.

Abstract

Proper maintenance of epigenetic information after replication is dependent on the rapid assembly and maturation of chromatin. Chromatin Assembly Complex 1 (CAF-1) is a conserved histone chaperone that deposits (H3-H4)2 tetramers as part of the replication-dependent chromatin assembly process. Loss of CAF-1 leads to a delay in chromatin maturation, albeit with minimal impact on steady-state chromatin structure. However, the mechanisms by which CAF-1 mediates the deposition of (H3-H4)2 tetramers and the phenotypic consequences of CAF-1-associated assembly defects are not well understood. We used nascent chromatin occupancy profiling to track the spatiotemporal kinetics of chromatin maturation in both wild-type (WT) and CAF-1 mutant yeast cells. Our results show that loss of CAF-1 leads to a heterogeneous rate of nucleosome assembly, with some nucleosomes maturing at near WT kinetics and others showing significantly slower maturation kinetics. The slow-to-mature nucleosomes are enriched in intergenic and poorly transcribed regions, suggesting that transcription-dependent assembly mechanisms can reset the slow-to-mature nucleosomes following replication. Nucleosomes with slow maturation kinetics are also associated with poly(dA:dT) sequences, which implies that CAF-1 deposits histones in a manner that counteracts resistance from the inflexible DNA sequence, promoting the formation of histone octamers as well as ordered nucleosome arrays. In addition, we show that the delay in chromatin maturation is accompanied by a transient and S-phase-specific loss of gene silencing and transcriptional regulation, revealing that the DNA replication program can directly shape the chromatin landscape and modulate gene expression through the process of chromatin maturation.

MeSH terms

  • Chromatin Assembly Factor-1 / genetics
  • Chromatin Assembly Factor-1 / metabolism
  • Chromatin Assembly and Disassembly*
  • Chromatin* / genetics
  • Chromatin* / metabolism
  • DNA Replication
  • Gene Expression Regulation, Fungal
  • Histones / metabolism
  • Kinetics
  • Nucleosomes* / genetics
  • Nucleosomes* / metabolism
  • S Phase* / genetics
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism
  • Transcription, Genetic*

Substances

  • Nucleosomes
  • Saccharomyces cerevisiae Proteins
  • Chromatin
  • Histones
  • Chromatin Assembly Factor-1