Progression occurs in approximately two-thirds of patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving chemoradiation and consolidation immunotherapy. Molecular indicators for outcome prediction are under development. A novel metric, the ratio of mean to max variant allele frequency (mmVAF), was derived from 431 pre-treatment tissue biopsies from The Cancer Genome Atlas and evaluated in serial circulating tumor DNA (ctDNA) from 70 LA-NSCLC patients receiving definitive radiotherapy/chemoradiotherapy (RT/CRT) with/without immunotherapy. High mmVAFs in pre-treatment tissue biopsies, indicating clonal predominant tumors (P < 0.01), were associated with inferior overall survival [OS, hazard ratio (HR): 1.48, 95 % confidence interval (CI): 1.11-1.98]. Similar associations of mmVAF with clonality (P < 0.01) and OS (HR: 2.24, 95 % CI: 0.71-7.08) were observed in pre-treatment ctDNA. At 1-month post-RT, ctDNA mmVAF-high patients receiving consolidation immunotherapy exhibited improved progression-free survival (PFS) compared to those who did not (HR: 0.14, 95 % CI: 0.03-0.67). From the baseline to week 4 of RT and/or 1-month post-RT, survival benefits from consolidation immunotherapy were exclusively observed in ctDNA mmVAF-increased patients (PFS, HR: 0.39, 95 % CI: 0.14-1.15), especially in terms of distant metastasis (HR: 0.11, 95 % CI: 0.01-0.95). In summary, our longitudinal data demonstrated the applicability of ctDNA-defined clonality for prognostic stratification and immunotherapy benefit prediction in LA-NSCLC.
Keywords: Circulating tumor DNA; Immunotherapy; Locally advanced non-small cell lung cancer; Prognosis; Radiotherapy.
Copyright © 2023 Elsevier B.V. All rights reserved.