Mass spectrometry imaging (MSI) is commonly used to map the spatial distribution of small molecules within complex biological matrices. One of the major challenges in imaging MS-based spatial metabolomics is molecular identification and metabolite annotation, to address this limitation, annotation is often complemented with parallel bulk LC-MS2-based metabolomics to confirm and validate identifications. Here we applied MSI method, utilizing data-dependent acquisition, to visualize and identify unknown molecules in a single instrument run. To reach this aim we developed MSIpixel, a fully automated pipeline for compound annotation and quantitation in MSI experiments. It overcomes challenges in molecular identification, and improving reliability and comprehensiveness in MSI-based spatial metabolomics.
Keywords: MSIpixel; annotations; mass spectrometry imaging; metabolomics.
© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.