Interpretable machine learning model based on the systemic inflammation response index and ultrasound features can predict central lymph node metastasis in cN0T1-T2 papillary thyroid carcinoma

Gland Surg. 2023 Nov 24;12(11):1485-1499. doi: 10.21037/gs-23-349. Epub 2023 Nov 17.

Abstract

Background: It is arguable whether individuals with T1-T2 papillary thyroid cancer (PTC) who have a clinically negative (cN0) diagnosis should undergo prophylactic central lymph node dissection (pCLND) on a routine basis. Many inflammatory indices, including the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and systemic immune-inflammatory index (SII), have been reported in PTC. However, the associations between the systemic inflammation response index (SIRI) and the risk of central lymph node metastasis (CLNM) remain unclear.

Methods: Retrospective research involving 1,394 individuals with cN0T1-T2 PTC was carried out, and the included patients were randomly allocated into training (70%) and testing (30%) subgroups. The preoperative inflammatory indices and ultrasound (US) features were used to train the models. To assess the forecasting factors as well as drawing nomograms, the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression were utilized. Then eight interpretable models based on machine learning (ML) algorithms were constructed, including decision tree (DT), K-nearest neighbor (KNN), support vector machine (SVM), artificial neural network (ANN), random forest (RF), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and categorical boosting (CatBoost). The performance of the models was evaluated by incorporating the area under the precision-recall curve (auPR) and the area under the receiver operating characteristic curve (auROC), as well as other conventional metrics. The interpretability of the optimum model was illustrated via the shapley additive explanations (SHAP) approach.

Results: Younger age, larger tumor size, capsular invasion, location (lower and isthmus), unclear margin, microcalcifications, color Doppler flow imaging (CDFI) blood flow, and higher SIRI (≥0.77) were independent positive predictors of CLNM, whereas female sex and Hashimoto thyroiditis were independent negative predictors, and nomograms were subsequently constructed. Taking into account both the auROC and auPR, the RF algorithm showed the best performance, and superiority to XGBoost, CatBoost and ANN. In addition, the role of key variables was visualized in the SHAP plot.

Conclusions: An interpretable ML model based on the SIRI and US features can be used to predict CLNM in individuals with cN0T1-T2 PTC.

Keywords: Central lymph node metastasis (CLNM); machine learning (ML); papillary thyroid cancer (PTC); shapley additive explanations (SHAP); systemic inflammation response index (SIRI).