Background and purpose: Gadolinium leakage in ocular structures (GLOS) is characterized by hyperintense signal in the chambers of the eye on FLAIR and has been reported in association with blood-ocular barrier breakdown in patients with ischemic strokes. The underlying mechanism of GLOS remains poorly understood; however, some studies suggest it may be part of a physiologic excretion pathway of gadolinium. This study aimed to determine the prevalence of GLOS in an unselected patient population.
Materials and methods: A retrospective analysis was conducted on 439 patients who underwent brain MR imaging within 7 days of receiving a gadolinium-based contrast agent injection for a prior MR imaging study. Clinical, imaging, and laboratory data were collected. Descriptive and logistic regression analyses were performed.
Results: GLOS was observed in 26 of 439 patients (6%). The occurrence of GLOS varied with time, with 3 (12%), 14 (54%), 8 (31%), and 1 (4%) patient showing GLOS within 24, 25-72, 73-120, and >120 hours after gadolinium-based contrast agent injection, respectively. Patients with GLOS were older (median age: 72 versus 55 years, P = .001) and had higher median serum creatinine levels (73 versus 64 µmol/L, P = .005) and a lower median estimated glomerular filtration rate (84 versus 101 mL/min/1.73 m2, P < .001). A shorter median time interval between gadolinium-based contrast agent injection and the index brain MR imaging was observed in the group positive for GLOS (62 versus 91 hours, P = .003). Multivariable regression analysis identified the estimated glomerular filtration rate (OR = 0.970; 95% CI, 0.049-0.992; P = .008) and time interval since gadolinium-based contrast agent injection (OR = 0.987; 95% CI, 0.977-0.997; P = .012) as independent factors associated with GLOS.
Conclusions: GLOS was observed in only a small percentage of patients receiving gadolinium-based contrast agent within 7 days before brain MR imaging. This phenomenon was noted in patients with normal findings on brain MR imaging and those with various CNS pathologies, and it was associated with lower estimated glomerular filtration rates and shorter time intervals after gadolinium-based contrast agent injection. While GLOS may be a physiologic gadolinium-based contrast agent excretion pathway, the presence of ocular disease was not formally evaluated in the included population. Awareness of GLOS is nonetheless useful for appropriate radiologic interpretation.
© 2024 by American Journal of Neuroradiology.