Mercury (Hg) contamination of aquatic environments can lead to bioaccumulation in organisms, but most previous work has focused on fish and not on semi-aquatic reptiles such as turtles that traverse both terrestrial and aquatic habitats. Here, we analyzed total Hg (THg) concentrations in 30 painted turtles (Chrysemys picta) collected from Lake Michigan (USA) coastal wetlands in 2013 to determine if (1) turtles bioaccumulated THg from the environment, (2) concentrations differed between turtle liver and muscle tissue, and (3) tissue concentrations were related to environmental concentrations (e.g., sediment THg). All individual turtles had detectable THg concentrations in both liver and muscle tissue. On average, THg concentrations were over three times higher in liver tissue compared to muscle tissue. We found a positive linear relationship between muscle THg concentrations and turtle body mass, a proxy for age, suggesting bioaccumulation in this species. Neither liver nor muscle THg concentrations followed the sediment contaminant gradient in the wetlands. Despite this, location was a strong predictor of tissue concentration in a linear model suggesting that other site-specific characteristics may be important. Overall, our results demonstrate that painted turtles accumulate mercury in liver and muscle tissues at different rates, which may be constrained by local conditions. Further research is needed to better understand the relationship between environmental mercury concentrations and body burdens in animals like turtles that traverse habitats. In addition, long-lived turtles could be incorporated into pollution monitoring programs to provide a more holistic picture of food web contamination and ecosystem health.
Keywords: Bioaccumulation; Coastal wetlands; Freshwater turtles; Heavy metals; Mercury.
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.