Unraveling the Genetic Basis of Feed Efficiency in Cattle through Integrated DNA Methylation and CattleGTEx Analysis

Genes (Basel). 2023 Nov 24;14(12):2121. doi: 10.3390/genes14122121.

Abstract

Feed costs can amount to 75 percent of the total overhead cost of raising cows for milk production. Meanwhile, the livestock industry is considered a significant contributor to global climate change due to the production of greenhouse gas emissions, such as methane. Indeed, the genetic basis of feed efficiency (FE) is of great interest to the animal research community. Here, we explore the epigenetic basis of FE to provide base knowledge for the development of genomic tools to improve FE in cattle. The methylation level of 37,554 CpG sites was quantified using a mammalian methylation array (HorvathMammalMethylChip40) for 48 Holstein cows with extreme residual feed intake (RFI). We identified 421 CpG sites related to 287 genes that were associated with RFI, several of which were previously associated with feeding or digestion issues. Activator of transcription and developmental regulation (AUTS2) is associated with digestive disorders in humans, while glycerol-3-phosphate dehydrogenase 2 (GPD2) encodes a protein on the inner mitochondrial membrane, which can regulate glucose utilization and fatty acid and triglyceride synthesis. The extensive expression and co-expression of these genes across diverse tissues indicate the complex regulation of FE in cattle. Our study provides insight into the epigenetic basis of RFI and gene targets to improve FE in dairy cattle.

Keywords: DNA methylation; cattle; feed efficiency; residual feed intake.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Feed / analysis
  • Animals
  • Cattle / genetics
  • DNA Methylation*
  • Eating / genetics
  • Female
  • Genome
  • Humans
  • Lactation* / physiology
  • Mammals / genetics