Enhancement of Chondrogenic Markers by Exosomes Derived from Cultured Human Synovial Fluid-Derived Cells: A Comparative Analysis of 2D and 3D Conditions

Biomedicines. 2023 Nov 25;11(12):3145. doi: 10.3390/biomedicines11123145.

Abstract

Objective: The goal of this pilot study was to investigate the effects of exosomes derived from synovial fluid-derived cells (SFDCs) cultured under normoxic conditions in a two-dimensional (2D) monolayer or encapsulated within a three-dimensional (3D) matrix for chondrogenic differentiation in vitro and cartilage defect repair in vivo.

Design: Synovial fluid samples were obtained from three patients, and SFDCs were isolated and expanded either in a 2D monolayer culture or seeded within a transglutaminase cross-linked gelatin (Col-Tgel) to create a 3D gel culture. Exosomes derived from each environment were isolated and characterized. Then, their effects on cartilage-cell proliferation and chondrogenic differentiation were assessed using an in vitro organoid model, and their potential for enhancing cartilage repair was evaluated using a rat cartilage defect model.

Results: SFDCs obtained from different donors reached a state of senescence after four passages in 2D culture. However, transferring these cells to a 3D culture environment mitigated the senescence and improved cell viability. The 3D-cultured exosomes exhibited enhanced potency in promoting chondrogenic differentiation, as evidenced by the increased expression of chondrogenic genes and greater deposition of cartilage-specific extracellular matrix. Furthermore, the 3D-cultured exosomes demonstrated superior effectiveness in enhancing cartilage repair and exhibited better healing properties compared to exosomes derived from a 2D culture.

Conclusions: The optimized 3D culture provided a more favorable environment for the proliferation of human synovial cells and the secretion of exosomes compared to the 2D culture. The 3D-cultured exosomes exhibited greater potential for promoting chondrogenic gene expression in vitro and demonstrated improved healing properties in repairing cartilage defects compared to exosomes derived from the 2D culture.

Keywords: 3D encapsulation; cartilage repair; chondrogenesis; exosome; synovial fluid-derived cells.

Grants and funding

This project is partially supported by the Nimni Cordoba Fund (B.H.).