Prognostic markers in routine clinical management of breast cancer are often assessed using RNA-based multi-gene panels that depend on fluctuating tumor purity. Multiplex fluorescence immunohistochemistry (mfIHC) holds the potential for an improved risk assessment. To enable automated prognosis marker detection (i.e., progesterone receptor [PR], estrogen receptor [ER], androgen receptor [AR], GATA3, TROP2, HER2, PD-L1, Ki67, TOP2A), a framework for automated breast cancer identification was developed and validated involving thirteen different artificial intelligence analysis steps and an algorithm for cell distance analysis using 11+1-marker-BLEACH&STAIN-mfIHC staining in 1404 invasive breast cancers of no special type (NST). The framework for automated breast cancer detection discriminated normal glands from malignant glands with an accuracy of 98.4%. This approach identified that five (PR, ER, AR, GATA3, PD-L1) of nine biomarkers were associated with prolonged overall survival (p ≤ 0.0095 each) and two of these (PR, AR) were found to be independent risk factors in multivariate analysis (p ≤ 0.0151 each). The combined assessment of PR-ER-AR-GATA3-PD-L1 as a five-marker prognosis score showed strong prognostic relevance (p < 0.0001) and was an independent risk factor in multivariate analysis (p = 0.0034). Automated breast cancer detection in combination with an artificial intelligence-based analysis of mfIHC enables a rapid and reliable analysis of multiple prognostic parameters. The strict limitation of the analysis to malignant cells excludes the impact of fluctuating tumor purity on assay precision.
Keywords: artificial intelligence; breast cancer; multiplex fluorescence immunohistochemistry; prognosis markers.