Polyolefin separators are the most common separators used in rechargeable lithium (Li)-ion batteries. However, the influence of different polyolefin separators on the performance of Li metal batteries (LMBs) has not been well studied. By performing particle injection simulations on the reconstructed three-dimensional pores of different polyethylene separators, it is revealed that the pore structure of the separator has a significant impact on the ion flux distribution, the Li deposition behavior, and consequently, the cycle life of LMBs. It is also discovered that the homogeneity factor of Li-ion toward Li metal electrode is positively correlated to the longevity and reproducibility of LMBs. This work not only emphasizes the importance of the pore structure of polyolefin separators but also provides an economic and effective method to screen favorable separators for LMBs.
Keywords: ion flux; lithium deposition behavior; lithium metal batteries; pore structures; separators.
© 2024 UChicago Argonne, LLC. Battelle Memorial Institute and The Authors. Advanced Materials published by Wiley‐VCH GmbH.