Enhanced Horizontal Dipole Orientation by Novel Penta-Helicene Anthracene-Based Host for Efficient Blue Fluorescent OLEDs

Small. 2024 Jun;20(24):e2311114. doi: 10.1002/smll.202311114. Epub 2023 Dec 29.

Abstract

Due to the relatively low photoluminescence quantum yield (PLQY) and horizontal dipole orientation of doped films, anthracene-based fluorescent organic light-emitting diodes (F-OLEDs) have faced a great challenge to achieve high external quantum efficiency (EQE). Herein, a novel approach is introduced by incorporating penta-helicene into anthracene, presented as linear-shaped 3-(4-(10-phenylanthracen-9-yl)phenyl)dibenzo[c,g]phenanthrene (BABH) and 3-(4-(10-(naphthalen-2-yl)anthracen-9-yl)phenyl)dibenzo[c,g]phenanthrene (NABH). These blue hosts exhibit minimal intermolecular overlap of π-π stacking, effectively suppressing excimer formation, which facilitates the effective transfer of singlet energy to the fluorescent dopant for PLQY as high as 90%. Additionally, the as-obtained two hosts of BABH and NABH have effectively demonstrated major horizontal components transition dipole moments (TDM) and high thermal stability with glass transitional temperature (Tg) surpassing 188 °C, enhancing the horizontal dipole orientation of their doped films to be 89% and 93%, respectively. The OLEDs based on BABH and NABH exhibit excellent EQE of 10.5% and 12.4% at 462 nm and device lifetime up to 90% of the initial luminance over 4500 h at 100 cd m-2, which has firmly established them as among the most efficient blue F-OLEDs based on anthracene to date to the best knowledge. This work provides an instructive strategy to design an effective host for highly efficient and stable F-OLEDs.

Keywords: anthracene‐based host; blue OLEDs; fluorescent emission; horizontal dipole orientation; linear‐shaped molecule.