Excitatory subtypes of the lateral amygdala neurons are differentially involved in regulation of synaptic plasticity and excitation/inhibition balance in aversive learning in mice

Front Cell Neurosci. 2023 Dec 14:17:1292822. doi: 10.3389/fncel.2023.1292822. eCollection 2023.

Abstract

The amygdala plays a crucial role in aversive learning. In Pavlovian fear conditioning, sensory information about an emotionally neutral conditioned stimulus (CS) and an innately aversive unconditioned stimulus is associated with the lateral amygdala (LA), and the CS acquires the ability to elicit conditioned responses. Aversive learning induces synaptic plasticity in LA excitatory neurons from CS pathways, such as the medial geniculate nucleus (MGN) of the thalamus. Although LA excitatory cells have traditionally been classified based on their firing patterns, the relationship between the subtypes and functional properties remains largely unknown. In this study, we classified excitatory cells into two subtypes based on whether the after-depolarized potential (ADP) amplitude is expressed in non-ADP cells and ADP cells. Their electrophysiological properties were significantly different. We examined subtype-specific synaptic plasticity in the MGN-LA pathway following aversive learning using optogenetics and found significant experience-dependent plasticity in feed-forward inhibitory responses in fear-conditioned mice compared with control mice. Following aversive learning, the inhibition/excitation (I/E) balance in ADP cells drastically changed, whereas that in non-ADP cells tended to change in the reverse direction. These results suggest that the two LA subtypes are differentially regulated in relation to synaptic plasticity and I/E balance during aversive learning.

Keywords: excitatory cell; experience-dependent plasticity; fear conditioning; inhibition/excitation; inhibitory cell; lateral amygdala (LA); medial geniculate nucleus (MGN).

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported in part by JSPS Grants-in-Aid for Scientific Research (JP21K07265 to MM, JP22K15231 to ST, JP21K16374 to TN; JP21K18564 and JP22H03542 to AMW), Grant-in-Aid for Transformative Research Areas (A) (22H 05162 to MM), Core Research for Evolutional Science and Technology Japan Science and Technology Agency (CREST-JST: JPMJCR1751 to AMW), Japan Agency for Medical Research and Development (AMED) Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) (JP19dm0207081 to AMW, JP21dm0207111 to HH), and JST Moonshot R and D (JPMJMS2024 to AMW).