Background: Lung metastasis is a significant adverse predictor of prognosis in patients with breast cancer. Accurate estimation for the prognosis of patients with lung metastasis and population-based validation for the models are lacking. In the present study, we aimed to establish the nomogram to identify prognostic factors correlated with lung metastases and evaluate individualized survival in patients with lung metastasis based on SEER (Surveillance, Epidemiology, and End Results) database.
Methods: We selected 1197 patients diagnosed with breast cancer with lung metastasis (BCLM) from the SEER database and randomly assigned them to the training group (n = 837) and the testing group (n = 360). Based on univariate and multivariate Cox regression analysis, we evaluated the effects of multiple variables on survival in the training group and constructed a nomogram to predict the 1-, 2-, and 3-year survival probability of patients. The nomogram were verified internally and externally by Concordance index (C-index), Net Reclassification (NRI), Integrated Discrimination Improvement (IDI), Decision Curve Analysis (DCA), and calibration plots.
Results: According to the results of multi-factor Cox regression analysis, age, histopathology, grade, marital status, bone metastasis, brain metastasis, liver metastasis, human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), progesterone receptor (PR), surgery, neoadjuvant therapy and chemotherapy were considered as independent prognostic factors for patients with BCLM. The C-index in the training group was 0.719 and the testing group was 0.695, respectively. The AUC values of the 1-, 2-, and 3-year prognostic nomogram in the training group were 0.798, 0.790 and 0.793, and the corresponding AUC values in the testing group were 0.765, 0.761 and 0.722. The calculation results of IDI and NRI were shown. The nomograms significantly improved the risk reclassification for 1-, 2-, and 3-year overall mortality prediction compared with the AJCC 7th staging system. According to the calibration plot, nomograms showed good consistency between predicted and actual overall survival (OS) values for the patients with BCLM. DCA showed that nomograms had better net benefits at different threshold probabilities at different time points compared with the AJCC 7th staging system.
Conclusions: Nomograms that predicted 1-, 2-, and 3-year OS for patients with BCLM were successfully constructed and validated to help physicians in evaluating the high risk of mortality in breast cancer patients.
Keywords: Breast cancer; Lung metastases; Nomograms; Prognosis; SEER database.
© 2023. The Author(s).