Association between ambient exposure to PM2.5 and upper aerodigestive tract cancer in Los Angeles

Int J Cancer. 2024 May 1;154(9):1579-1586. doi: 10.1002/ijc.34835. Epub 2024 Jan 5.

Abstract

Fine particulate matter (PM2.5 ) contains carcinogens similar to those generated by tobacco smoking, which may increase the risks of developing smoking-related cancers, such as upper aerodigestive track (UADT) cancers, for both smokers and never-smokers. Therefore, it is imperative to understand the relation between ambient PM2.5 exposure and risk of UADT cancers. A population-based case-control study involving 565 incident UADT cancer cases and 983 controls was conducted in Los Angeles County from 1999 to 2004. The average residential PM2.5 concentration 1 year before the diagnosis date for cases and the reference date for controls was assessed using a chemical transport model. The association between ambient PM2.5 and the UADT cancers was estimated by unconditional logistic regression, adjusting for confounders at the individual and block-group level. Stratified analyses were conducted by sex, tobacco smoking status and UADT subsites. We also assessed the interaction between PM2.5 and tobacco smoking on UADT cancers. PM2.5 concentrations were associated with an elevated odds of UADT cancers (adjusted odds ratio = 1.21 per interquartile range [4.5 μg/m3 ] increase; 95% confidence interval: 1.02, 1.44). The association between PM2.5 and UADT cancers was similar across UADT subsites, sex and tobacco smoking status. The interaction between PM2.5 and tobacco smoking on UADT cancers was approximately additive on the odds scale. The effect estimate for PM2.5 and UADT cancers was similar among never smokers. Our findings support the hypothesis that exposure to PM2.5 increases the risk of UADT cancers. Improvements in air quality may reduce the risk of UADT cancers.

Keywords: air pollution; esophageal cancer; head and neck cancer; particulate matter; upper aerodigestive tract cancers.

MeSH terms

  • Case-Control Studies
  • Head and Neck Neoplasms*
  • Humans
  • Los Angeles / epidemiology
  • Particulate Matter / adverse effects
  • Risk Factors
  • Smoking

Substances

  • Particulate Matter