Ethnopharmacological relevance: Nerium oleander is used to treat liver-associated chronic metabolic diseases in traditional medicinal systems across the globe. The hepatoprotective effects of oleander are mentioned in Indian and Chinese traditional medicinal literature.
Aim of the study: The present study aimed to investigate the cellular mechanisms behind the hepatoprotective effects of a non-toxic dose of oleander (NO).
Materials and methods: The hepatoprotective effects of NO were tested against lipopolysaccharide (LPS)-treated HepG2 cells. Oxidative stress response was studied using cellular enzymatic assays, and gene expression was analyzed using qRT-PCR. HepG2 cells were pretreated with TAK-242 (pharmacological inhibitor of TLR4) to decipher the anti-inflammatory mechanisms of NO. Cell-free metabolites were analyzed using GCMS and were subjected to pathway enrichment analysis.
Results: NO reduced systemic inflammation, serum lipid peroxidation byproducts, and glucose without affecting serum transaminase levels and hepatic histopathological features. NO attenuated the inflammation-induced loss of antioxidant enzyme activities and mRNA expressions of toll-like receptor-4 (TLR4)/nuclear factor κβ (NFκβ)-dependent inflammatory genes. In TAK-242 pretreated cells, LPS was unable to induce inflammatory and oxidative responses. However, NO treatment in TAK-242 pretreated cells with LPS stimulation further reduced the signs of inflammation and improved hepatoprotective activities. A comparative analysis of the intracellular global metabolome from HepG2 cells with and without NO treatment indicated NO-mediated favorable modulation of intracellular metabolic pathways that support cytoprotective activities.
Conclusion: NO protects HepG2 cells from LPS-induced oxidative and inflammatory injury. The hepatoprotective effects of NO are mediated by a TLR4-independent process and through a favorable modulation of the intracellular global metabolome that supports cytoprotection.
Keywords: Antioxidant; Cytoprotection; Diabetes; Inflammation; Metabolome; Nerium oleander; TLR4.
Copyright © 2024 Elsevier B.V. All rights reserved.