Data on fungal abundance and diversity in copper and cobalt contaminated tailing soils in Kitwe, Zambia

Data Brief. 2023 Dec 12:52:109951. doi: 10.1016/j.dib.2023.109951. eCollection 2024 Feb.

Abstract

Mining activities in the Zambian Copperbelt Province have led to the release of heavy metal-containing waste, causing contamination in nearby areas. Despite this environmental challenge, limited knowledge exists regarding the mycobiota in copper mine sites. This study investigates fungal community structure in copper(Cu) and cobalt (Co) contaminated soils around decommisioned dams in Kitwe. Metagenomic analysis of the ITSF1 gene amplicons was used for the purpose. The composition of soil fungal communities was characterized, and the findings revealed significant insights. At the phylum level, Basidiomycota dominated the fungal profiles in the tailings (64.59%), followed by Ascomycota (21.30%), Glomeromycota (4.53%), and Rozellomycota (0.0275%). Several fungal genera, including Vanrija, Paraconiothyrium, Toxicladosporium, Neocosmospora, Septoglomus, and Fusarium, were more abundant in contaminated tailings soils, suggesting their potential in leaching, absorbing, and transforming heavy metals. In contrast, the reference soil at Mwekera National Forest exhibited different dominance patterns with four fungal phyla identified, with Basidiomycota and Ascomycota dominating most samples. Glomeromycota, known for forming arbuscular mycorrhizae with plants, were found in contaminated soils, while Rozellomycota, which can serve ecological roles in various ecosystems, were also present. Notable fungal species such as Aspergillus, Penicillium, Fusarium, and Oidiodendron demonstrated resilience to Cu and Co, the primary contaminants in the Copperbelt.

Keywords: Fungal diversity; ITSF1; Kitwe; Metagenomics.