Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of malignant and non-malignant disorders. CARs are synthetic transmembrane receptors expressed on genetically modified immune effector cells, including T cells, natural killer (NK) cells, or macrophages, which are able to recognize specific surface antigens on target cells and eliminate them. CAR-modified immune cells mediate cytotoxic antitumor effects via numerous mechanisms, including the perforin and granzyme pathway, Fas and Fas Ligand (FasL) pathway, and cytokine secretion. High hopes are associated with the prospective use of the CAR-T strategy against solid cancers, especially the ones resistant to standard oncological therapies, such as pancreatic cancer (PC). Herein, we summarize the current pre-clinical and clinical studies evaluating potential tumor-associated antigens (TAA), CAR-T cell toxicities, and their efficacy in PC.
Keywords: CAR T cells; adoptive cell therapy; chimeric antigen receptor; immunotherapy; pancreatic cancer.