A comprehensive review of the development of land use regression approaches for modeling spatiotemporal variations of ambient air pollution: A perspective from 2011 to 2023

Environ Int. 2024 Jan:183:108430. doi: 10.1016/j.envint.2024.108430. Epub 2024 Jan 7.

Abstract

Land use regression (LUR) models are widely used in epidemiological and environmental studies to estimate humans' exposure to air pollution within urban areas. However, the early models, developed using linear regressions and data from fixed monitoring stations and passive sampling, were primarily designed to model traditional and criteria air pollutants and had limitations in capturing high-resolution spatiotemporal variations of air pollution. Over the past decade, there has been a notable development of multi-source observations from low-cost monitors, mobile monitoring, and satellites, in conjunction with the integration of advanced statistical methods and spatially and temporally dynamic predictors, which have facilitated significant expansion and advancement of LUR approaches. This paper reviews and synthesizes the recent advances in LUR approaches from the perspectives of the changes in air quality data acquisition, novel predictor variables, advances in model-developing approaches, improvements in validation methods, model transferability, and modeling software as reported in 155 LUR studies published between 2011 and 2023. We demonstrate that these developments have enabled LUR models to be developed for larger study areas and encompass a wider range of criteria and unregulated air pollutants. LUR models in the conventional spatial structure have been complemented by more complex spatiotemporal structures. Compared with linear models, advanced statistical methods yield better predictions when handling data with complex relationships and interactions. Finally, this study explores new developments, identifies potential pathways for further breakthroughs in LUR methodologies, and proposes future research directions. In this context, LUR approaches have the potential to make a significant contribution to future efforts to model the patterns of long- and short-term exposure of urban populations to air pollution.

Keywords: Advanced statistical methods; Air pollution; Land use regression; Linear regression; Multi-source observations; Spatiotemporal modeling.

Publication types

  • Review

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollution* / analysis
  • Environmental Monitoring / methods
  • Humans
  • Linear Models
  • Nitrogen Dioxide / analysis
  • Particulate Matter / analysis

Substances

  • Particulate Matter
  • Air Pollutants
  • Nitrogen Dioxide