Background: Ongoing national and international surveillance efforts are critical components of antimicrobial stewardship, resistance monitoring, and drug development programs. In this report, we summarize the results of ceftolozane/tazobactam, imipenem/relebactam, ceftazidime/avibactam and comparator agent testing against 10 509 Enterobacterales and 2524 Pseudomonas aeruginosa collected by USA clinical laboratories in 2019-21 as part of the SMART global surveillance programme.
Methods: MICs were determined by CLSI broth microdilution and interpreted using 2023 CLSI M100 breakpoints.
Results: Most Enterobacterales were ceftazidime/avibactam susceptible (>99%), meropenem susceptible (99%) and ceftolozane/tazobactam susceptible (94%). Non-Morganellaceae Enterobacterales were also highly susceptible to imipenem/relebactam (99%). Ceftolozane/tazobactam inhibited 94% of Escherichia coli and 89% of Klebsiella pneumoniae with ceftriaxone non-susceptible/non-carbapenem-resistant phenotypes. Against P. aeruginosa, ceftolozane/tazobactam (97% susceptible) was more active than ceftazidime/avibactam (95%) and imipenem/relebactam (91%). MDR and difficult-to-treat resistance (DTR) phenotypes were identified in 13% and 7% of P. aeruginosa isolates, respectively. Ceftolozane/tazobactam remained active against 78% of MDR P. aeruginosa (13% and 23% higher than ceftazidime/avibactam and imipenem/relebactam, respectively) and against 74% of DTR P. aeruginosa (24% and 37% higher than ceftazidime/avibactam and imipenem/relebactam, respectively). Length of hospital stay at the time of specimen collection, ward type and infection type resulted in percent susceptible value differences of >5% across isolate demographic strata for some antimicrobial agent/pathogen combinations.
Conclusions: We conclude that in the USA, in 2019-21, carbapenem (meropenem) resistance remained uncommon in Enterobacterales and ceftolozane/tazobactam was more active than both ceftazidime/avibactam and imipenem/relebactam against P. aeruginosa.
© The Author(s) 2024. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy.