Preclinical Evaluation of NTX-301, a Novel DNA Hypomethylating Agent in Ovarian Cancer

Clin Cancer Res. 2024 Mar 15;30(6):1175-1188. doi: 10.1158/1078-0432.CCR-23-2368.

Abstract

Purpose: DNA methylation causes silencing of tumor-suppressor and differentiation-associated genes, being linked to chemoresistance. Previous studies demonstrated that hypomethylating agents (HMA) resensitize ovarian cancer to chemotherapy. NTX-301 is a highly potent and orally bioavailable HMA, in early clinical development.

Experimental design: The antitumor effects of NTX-301 were studied in ovarian cancer models by using cell viability, stemness and ferroptosis assays, RNA sequencing, lipidomic analyses, and stimulated Raman spectroscopy.

Results: Ovarian cancer cells (SKOV3, IC50 = 5.08 nmol/L; OVCAR5 IC50 = 3.66 nmol/L) were highly sensitive to NTX-301 compared with fallopian tube epithelial cells. NTX-301 downregulated expression of DNA methyltransferases 1-3 and induced transcriptomic reprogramming with 15,000 differentially expressed genes (DEG, P < 0.05). Among them, Gene Ontology enrichment analysis identified regulation of fatty acid biosynthesis and molecular functions related to aldehyde dehydrogenase (ALDH) and oxidoreductase, known features of cancer stem cells. Low-dose NTX-301 reduced the ALDH(+) cell population and expression of stemness-associated transcription factors. Stearoyl-coenzyme A desaturase 1 (SCD), which regulates production of unsaturated fatty acids (UFA), was among the top DEG downregulated by NTX-301. NTX-301 treatment decreased levels of UFA and increased oxidized lipids, and this was blunted by deferoxamine, indicating cell death via ferroptosis. NTX-301-induced ferroptosis was rescued by oleic acid. In vivo, monotherapy with NTX-301 significantly inhibited ovarian cancer and patient-derived xenograft growth (P < 0.05). Decreased SCD levels and increased oxidized lipids were detected in NTX-301-treated xenografts.

Conclusions: NTX-301 is active in ovarian cancer models. Our findings point to a new mechanism by which epigenetic blockade disrupts lipid homeostasis and promotes cancer cell death.

MeSH terms

  • Aldehyde Dehydrogenase / genetics
  • Cell Line, Tumor
  • DNA
  • Enzyme Inhibitors / therapeutic use
  • Female
  • Humans
  • Lipids / therapeutic use
  • Ovarian Neoplasms* / drug therapy
  • Ovarian Neoplasms* / genetics
  • Ovarian Neoplasms* / pathology

Substances

  • Enzyme Inhibitors
  • Aldehyde Dehydrogenase
  • DNA
  • Lipids