We report experimental results on breath figures (BFs) observed on substrates with quenched disorder. The evolution of BFs is found to be primarily influenced by global parameters associated with boundary conditions. We investigate classical statistical measures and explore topological properties using persistent homology techniques based on a modified Vietoris-Rips complex. Our findings reveal that the evolution of the number surface density of condensed droplets plays a crucial role in determining various condensation stages previously considered distinct. This evolution is significantly influenced by the distribution of nucleation sites and the individual growth law governing water droplets when coalescence does not occur. Ultimately, we demonstrate the capability to predict coalescence events based on the topological characteristics of BFs at a given point in time.