Evaluation of Novel Preformed Particle Gel System for Conformance Control in Mature Oil Reservoirs

Gels. 2024 Jan 17;10(1):70. doi: 10.3390/gels10010070.

Abstract

To address challenges associated with excessive water production in mature oil reservoirs, this study introduces a carboxymethyl cellulose (CMC)-based material as a novel preformed particle gel (PPG) designed to plug excessive water pathways and redistribute the subsequent injected water toward unswept zones. Through microwave-assisted grafting copolymerization of CMC with acrylamide (AM), we successfully generated multi-sized dry particles within the range of 250-800 µm. Comprehensive analyses, including Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), have confirmed the chemical composition and morphology of the resulting carboxymethyl cellulose-grafted crosslinked polyacrylamide (CMC/PAMBA). Swelling kinetics and rheology tests were conducted to confirm the ability of this novel PPG system to perform at different reservoir conditions. The results of core flooding experiments showed that the CMC/PAMBA PPG is capable of plugging open fractures with a water breakthrough pressure gradient of up to 144 psi/ft. This preformed particle gel (PPG) system was designed specifically for application in Middle East reservoirs, which are distinguished by high salinity and elevated temperature levels. This PPG system is able to swell up to 10 times its original size in seawater and maintain a strength of about 1300 Pa at a temperature of 80 °C. Further optimization is conceivable to enhance injection efficiency and achieve superior plugging outcomes.

Keywords: carboxymethyl cellulose; conformance control; excessive water production; plugging efficiency; preformed particle gel.

Grants and funding

This research was funded by Qatar National Research Fund (a member of Qatar Foundation) for funding through Grant # NPRP13S-1231-190009. Al-Salam Petroleum Services Company, Qatar, is also acknowledged for co-funding this project.