Effect of replacing durum wheat semolina with Tenebrio molitor larvae powder on the techno-functional properties of the binary blends

Curr Res Food Sci. 2023 Dec 28:8:100672. doi: 10.1016/j.crfs.2023.100672. eCollection 2024.

Abstract

Tenebrio molitor (TM) larvae, due to their high nutritional value, are gaining growing attention in food and feed sectors. Although few studies dealt with wheat-based products functionalized with TM larvae powder, there is a lack of comprehensive characterization of the raw materials to optimize the formulations for end-product recommendation. This study aimed at investigating the effects of partial replacement of durum wheat semolina with increasing amounts of TM larvae powder (5-30%) on the techno-functional properties of the binary blends. Color, granulometry, hydration properties, pasting characteristics, spectral characteristics (FTIR), reducing sugar content, and bioactivity in terms of total phenolic content (TPC) and antioxidant activity (FRAP, DPPH, ABTS) were assessed in the resulting blends. The increasing insect powder decreased the lightness (L*) and yellowness (b*) but increased the redness (a*) of the samples. In turn, the addition of insect powder did not negatively alter the hydration properties, which were comparable to those detected for semolina. Higher amounts of insect powder led to increased protein and lipid contents, as corroborated by the FTIR spectra, and decreased pasting parameters, with stronger starch granule stability detected when 20% and 30% of insect powder were added to the formulation. Significant increases in TPC and antioxidant activity were observed with increasing amount of insect powder (up to 87%, 78%, 2-fold, 67%, for TPC, FRAP, DPPH, and ABTS, respectively, compared to semolina). Therefore, these promising results have highlighted the possibility of using TM larvae powder as an unconventional ingredient for wheat-based products, by enhancing the nutritional and health-promoting values.

Keywords: Bioactive compounds; Edible insects; Physicochemical properties; Tenebrio molitor larvae; Wheat-based foods.