Spin-Orbit Torques and Magnetization Switching in (Bi,Sb)2Te3/Fe3GeTe2 Heterostructures Grown by Molecular Beam Epitaxy

Nano Lett. 2024 Jan 24;24(3):822-828. doi: 10.1021/acs.nanolett.3c03291. Epub 2024 Jan 10.

Abstract

Topological insulators (TIs) hold promise for manipulating the magnetization of a ferromagnet (FM) through the spin-orbit torque (SOT) mechanism. However, integrating TIs with conventional FMs often leads to significant device-to-device variations and a broad distribution of SOT magnitudes. In this work, we present a scalable approach to grow a full van der Waals FM/TI heterostructure by molecular beam epitaxy, combining the charge-compensated TI (Bi,Sb)2Te3 with 2D FM Fe3GeTe2 (FGT). Harmonic magnetotransport measurements reveal that the SOT efficiency exhibits a non-monotonic temperature dependence and experiences a substantial enhancement with a reduction of the FGT thickness to 2 monolayers. Our study further demonstrates that the magnetization of ultrathin FGT films can be switched with a current density of Jc ∼ 1010 A/m2, with minimal device-to-device variations compared to previous investigations involving traditional FMs.

Keywords: 2D ferromagnet; magnetization switching; molecular beam epitaxy; spin−orbit torque; topological insulator.