This research aimed to develop a model for real-time prediction of aerobic exercise exertion levels. ECG signals were registered during 16-minute cycling exercises. Perceived ratings of exertion (RPE) were collected each minute from the study participants. Based on the reported RPE, each consecutive minute of the exercise was assigned to the "high exertion" or "low exertion" class. The characteristics of heart rate variability (HRV) in time and frequency domains were used as predictive features. The top ten ranked predictive features were selected using the minimum redundancy maximum relevance (mRMR) algorithm. The support vector machine demonstrated the highest accuracy with an F1 score of 82%.
Keywords: Machine learning; aerobic exercise; exertion level.