Comparative genomic analysis of Microcystis strain diversity using conserved marker genes

Harmful Algae. 2024 Feb:132:102580. doi: 10.1016/j.hal.2024.102580. Epub 2024 Jan 11.

Abstract

Microcystis-dominated cyanobacterial harmful algal blooms (cyanoHABs) have a global impact on freshwater environments, affecting both wildlife and human health. Microcystis diversity and function in field samples and laboratory cultures can be determined by sequencing whole genomes of cultured isolates or natural populations, but these methods remain computationally and financially expensive. Amplicon sequencing of marker genes is a lower cost and higher throughput alternative to characterize strain composition and diversity in mixed samples. However, the selection of appropriate marker gene region(s) and primers requires prior understanding of the relationship between single gene genotype, whole genome content, and phenotype. To identify phylogenetic markers of Microcystis strain diversity, we compared phylogenetic trees built from each of 2,351 individual core genes to an established phylogeny and assessed the ability of these core genes to predict whole genome content and bioactive compound genotypes. We identified single-copy core genes better able to resolve Microcystis phylogenies than previously identified marker genes. We developed primers suitable for current Illumina-based amplicon sequencing with near-complete coverage of available Microcystis genomes and demonstrate that they outperform existing options for assessing Microcystis strain composition. Results showed that genetic markers can be used to infer Microcystis gene content and phenotypes such as potential production of bioactive compounds , although marker performance varies by bioactive compound gene and sequence similarity. Finally, we demonstrate that these markers can be used to characterize the Microcystis strain composition of laboratory or field samples like those collected for surveillance and modeling of Microcystis-dominated cyanobacterial harmful algal blooms.

Keywords: Amplicon sequencing; Marker genes; Microcystis; Phylogenetics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cyanobacteria* / genetics
  • Genomics
  • Harmful Algal Bloom
  • Humans
  • Microcystis* / genetics
  • Phylogeny