Statistical and Machine Learning Analysis in Brain-Imaging Genetics: A Review of Methods

Behav Genet. 2024 May;54(3):233-251. doi: 10.1007/s10519-024-10177-y. Epub 2024 Feb 10.

Abstract

Brain-imaging-genetic analysis is an emerging field of research that aims at aggregating data from neuroimaging modalities, which characterize brain structure or function, and genetic data, which capture the structure and function of the genome, to explain or predict normal (or abnormal) brain performance. Brain-imaging-genetic studies offer great potential for understanding complex brain-related diseases/disorders of genetic etiology. Still, a combined brain-wide genome-wide analysis is difficult to perform as typical datasets fuse multiple modalities, each with high dimensionality, unique correlational landscapes, and often low statistical signal-to-noise ratios. In this review, we outline the progress in brain-imaging-genetic methodologies starting from early massive univariate to current deep learning approaches, highlighting each approach's strengths and weaknesses and elongating it with the field's development. We conclude by discussing selected remaining challenges and prospects for the field.

Keywords: Brain-imaging genetic studies; Brain-imaging genomics; Deep learning; Machine learning; Methodology; Statistical analysis.

Publication types

  • Review

MeSH terms

  • Brain* / diagnostic imaging
  • Machine Learning*
  • Neuroimaging / methods