Ambient air pollutants exposures may lead to aggravated Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). However, there is still a scarcity of empirical studies that have rigorously estimated this association, especially in regions where air pollution is severe. To fill in the literature gap, we conducted a cross-sectional study involving 2711,207 adults living in five regions of southern Xinjiang Uyghur Autonomous Region in 2021. Using a Space-Time Extra-Trees model, we assessed the four-year (2017-2020) average concentrations of particulate matter with aerodynamic diameter ≤1 µm (PM1), particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), particulate matter with aerodynamic diameter ≤10 µm (PM10), ozone (O3), sulfur dioxide (SO2), and carbon monoxide (CO), and then assigned these values to the participants. Generalized linear mixed models were employed to examine the relationships between air pollutants and the prevalence of MAFLD, with adjustment for multiple confounding factors. The odds ratios and 95% confidence intervals of MAFLD were 2.002 (1.826-2.195), 1.133 (1.108-1.157), 1.034 (1.027-1.040), 1.077 (1.023-1.134), 2.703 (2.322-3.146) and 1.033 (1.029-1.036) per 10 µg/m3 increase in the 4-year average PM1, PM2.5, PM10, O3, SO2 and CO exposures, respectively. The robustness of the findings was confirmed by a series of sensitivities. In summary, long-term exposure to ambient air pollutants was associated with increased odds of MAFLD, particularly in males and individuals with unhealthy lifestyles.
Keywords: Adults; Cross-sectional study; Gaseous pollutant; Metabolic dysfunction-associated fatty liver disease; Particulate matter.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.