Background: The emergence of single-cell technology offers a unique opportunity to explore cellular similarity and heterogeneity between precancerous diseases and solid tumors. However, there is lacking a systematic study for identifying and characterizing similarities at single-cell resolution.
Methods: We developed SIMarker, a computational framework to detect cellular similarities between precancerous diseases and solid tumors based on gene expression at single-cell resolution. Taking hepatocellular carcinoma (HCC) as a case study, we quantified the cellular and molecular connections between HCC and cirrhosis. Core analysis modules of SIMarker is publicly available at https://github.com/xmuhuanglab/SIMarker ("SIM" means "similarity" and "Marker" means "biomarkers).
Results: We found PGA5+ hepatocytes in HCC showed cirrhosis-like characteristics, including similar transcriptional programs and gene regulatory networks. Consequently, the genes constituting the gene expression program of these cirrhosis-like subpopulations were designated as cirrhosis-like signatures (CLS). Strikingly, our utilization of CLS enabled the development of diagnosis and prognosis biomarkers based on within-sample relative expression orderings of gene pairs. These biomarkers achieved high precision and concordance compared with previous studies.
Conclusions: Our work provides a systematic method to investigate the clinical translational significance of cellular similarities between HCC and cirrhosis, which opens avenues for identifying similar paradigms in other categories of cancers and diseases.
Keywords: Cirrhosis-like signatures; Early diagnosis and prognosis; Hepatocellular carcinoma; Orderings; Relative expression; Single-cell transcriptome.
Copyright © 2024 Elsevier Ltd. All rights reserved.