Organisms use diverse strategies to thrive in varying habitats. While life history theory partly explains these relationships, the combined impact of resource availability and disturbance frequency on life form strategy evolution has received limited attention. We use Chamaecrista species, a legume plant lineage with a high diversity of plant life forms in the Neotropics, and employ ecological niche modeling and comparative phylogenetic methods to examine the correlated evolution of plant life forms and environmental niches. Chamaephytes and phanerophytes have optima in environments characterized by moderate water and nutrient availability coupled with infrequent fire disturbances. By contrast, annual plants thrive in environments with scarce water and nutrients, alongside frequent fire disturbances. Similarly, geophyte species also show increased resistance to frequent fire disturbances, although they thrive in resource-rich environments. Our findings shed light on the evolution of plant strategies along environmental gradients, highlighting that annuals and geophytes respond differently to high incidences of fire disturbances, with one enduring it as seeds in a resource-limited habitat and the other relying on reserves and root resprouting systems in resource-abundant habitats. Furthermore, it deepens our understanding of how organisms evolve associated with their habitats, emphasizing a constraint posed by low-resource and high-disturbance environments.
Keywords: Chamaecrista; South America; adaptation; climate; ecological opportunity; legumes; macroevolution; niche.
© 2024 The Authors New Phytologist © 2024 New Phytologist Foundation.