Fabrication of a ZIF-on-lamella-zeolite architecture as a highly efficient catalyst for aldol condensation

Dalton Trans. 2024 Mar 12;53(11):5212-5221. doi: 10.1039/d4dt00288a.

Abstract

Designing composite catalysts that harness the strengths of individual components while mitigating their limitations is a fascinating yet challenging task in catalyst engineering. In this study, we aimed to enhance the catalytic performance by anchoring ZIF-67 nanoparticles of precise sizes onto lamella Si-MWW zeolite surfaces through a stepwise regrowth process. Co ions were initially grafted onto the zeolite surface using ultrasonication, followed by a seed-assisted secondary growth method. Si-MWW proved to be the ideal zeolite support due to its thin layered structure, large external surface area and substantial lateral dimensions. The abundant Si-OH groups on its surface played a crucial role in securely binding Co ions, limiting size growth and preventing undesirable ZIF-67 aggregation. The resulting ZIF-67/MWW composite with finely dispersed nano-scale ZIF-67 particles exhibited a remarkable catalytic performance and stability in the aldol condensation reactions involving acetone and various aldehydes. This approach holds promise for designing MOF/zeolite composite catalysts.