Background: Segmenting colorectal polyps presents a significant challenge due to the diverse variations in their size, shape, texture, and intricate backgrounds. Particularly demanding are the so-called "camouflaged" polyps, which are partially concealed by surrounding tissues or fluids, adding complexity to their detection.
Methods: We present CPSNet, an innovative model designed for camouflaged polyp segmentation. CPSNet incorporates three key modules: the Deep Multi-Scale-Feature Fusion Module, the Camouflaged Object Detection Module, and the Multi-Scale Feature Enhancement Module. These modules work collaboratively to improve the segmentation process, enhancing both robustness and accuracy.
Results: Our experiments confirm the effectiveness of CPSNet. When compared to state-of-the-art methods in colon polyp segmentation, CPSNet consistently outperforms the competition. Particularly noteworthy is its performance on the ETIS-LaribPolypDB dataset, where CPSNet achieved a remarkable 2.3% increase in the Dice coefficient compared to the Polyp-PVT model.
Conclusion: In summary, CPSNet marks a significant advancement in the field of colorectal polyp segmentation. Its innovative approach, encompassing multi-scale feature fusion, camouflaged object detection, and feature enhancement, holds considerable promise for clinical applications.
Keywords: Camouflaged polyps; Deep learning; Feature enhancement; Feature fusion; Segmentation.
Copyright © 2024 Elsevier Ltd. All rights reserved.