Background: The operation planning and production of individualized implants with the help of AI-based software after orbital fractures have become increasingly important in recent years. This retrospective study aimed to investigate the healthy orbitae of 372 patients from CT images in the bone and soft tissue windows using the Disior™ Bonelogic™ CMF Orbital software. (version 2.1.28). Methods: We analyzed the variables orbital volume, length, and area as a function of age and gender and compared bone and soft tissue windows. Results: For all variables, the intraclass correlation showed excellent agreement between the bone and soft tissue windows (p < 0.001). All variables showed higher values when calculated based on bone fenestration with, on average, 1 mL more volume, 0.35 mm more length, and 0.71 cm2 more area (p < 0.001). Across all age groups, men displayed higher values than women with, on average, 8.1 mL larger volume, a 4.78 mm longer orbit, and an 8.5 cm2 larger orbital area (p < 0.001). There was also a non-significant trend in all variables and both sexes toward growth with increasing age. Conclusions: These results mean that, due to the symmetry of the orbits in both the bone and soft tissue windows, the healthy orbit can be mirrored for surgical planning in the event of a fracture.
Keywords: aging; artificial intelligence; automated segmentation; bony orbit; orbital symmetry; orbital volume measurement.