Robust Immune Response and Protection against Lethal Pneumococcal Challenge with a Recombinant BCG-PspA-PdT Prime/Boost Scheme Administered to Neonatal Mice

Vaccines (Basel). 2024 Jan 25;12(2):122. doi: 10.3390/vaccines12020122.

Abstract

Pneumococcal diseases are an important public health problem, with high mortality rates in young children. Although conjugated pneumococcal vaccines offer high protection against invasive pneumococcal diseases, this is restricted to vaccine serotypes, leading to serotype replacement. Furthermore, the current vaccines do not protect neonates. Therefore, several protein-based pneumococcal vaccines have been studied over the last few decades. Our group established a recombinant BCG expressing rPspA-PdT as a prime/rPspA-PdT boost strategy, which protected adult mice against lethal intranasal pneumococcal challenge. Here, we immunized groups of neonate C57/Bl6 mice (6-10) (at 5 days) with rBCG PspA-PdT and a boost with rPspA-PdT (at 12 days). Controls were saline or each antigen alone. The prime/boost strategy promoted an IgG1 to IgG2c isotype shift compared to protein alone. Furthermore, there was an increase in specific memory cells (T and B lymphocytes) and higher cytokine production (IFN-γ, IL-17, TNF-α, IL-10, and IL-6). Immunization with rBCG PspA-PdT/rPspA-PdT showed 100% protection against pulmonary challenge with the WU2 pneumococcal strain; two doses of rPspA-PdT showed non-significant protection in the neonates. These results demonstrate that a prime/boost strategy using rBCG PspA-PdT/rPspA-PdT is effective in protecting neonates against lethal pneumococcal infection via the induction of strong antibody and cytokine responses.

Keywords: neonatal mice; prime/boost strategy; recombinant BCG; streptococcus pneumoniae.