Dengue viruses (DENV) continue to cause large outbreaks in tropical countries, while chikungunya and Zika (ZIKV) viruses have added complexity to Aedes-borne disease prevention and control efforts. Because these viruses are transmitted by the same vectors in urban areas, it is useful to understand if sequential outbreaks caused by these viruses have commonalities, such as similar seasonal and spatial patterns, that would help anticipate and perhaps prevent future outbreaks. We explored and analyzed the heterogeneity of confirmed cases of DENV (2010-2014 and 2015-2022) and ZIKV (2016-2017) during outbreaks in the San Juan metropolitan area of Puerto Rico to explore their degree of overlap and prioritize areas for Aedes aegypti control. Deidentified, georeferenced case data were aggregated into grid cells (500 × 500 m) within a geographical information system of the study area and analyzed to calculate the degree of overlap between outbreaks. Spatial autocorrelations using local indicators of spatial associations were conducted to identify significant disease case hot spots and correlations between outbreaks. We found that 75% of cases during the three transmission periods were concentrated in 25% of the total number of grid cells covering the study area. We also found significant clustering of cases during each outbreak, enabling identification of consistent disease hot spots. Our results showed 85% spatial overlap between cases of ZIKV in 2015-2017 and DENV in 2010-2014 and 97% overlap between DENV cases in 2010-2014 and 2015-2022. These results reveal urban areas at greater risk of future arbovirus outbreaks that should be prioritized for vector control.