Background: A series of signal detection methods have been developed to detect adverse drug reaction (ADR) signals in spontaneous reporting system. However, different signal detection methods yield quite different signal detection results, and we do not know which method has the best detection performance. How to choose the most suitable signal detection method is an urgent problem to be solved. In this study, we systematically reviewed the characteristics and application scopes of current signal detection methods, with the goal of providing references for the optimization selection of signal detection methods in spontaneous reporting system.
Methods: We searched six databases from inception to January 2023. The search strategy targeted literatures regarding signal detection methods in spontaneous reporting system. We used thematic analysis approach to summarize the advantages, disadvantages, and application scope of each signal detection method.
Results: A total of 93 literatures were included, including 27 reviews and 66 methodological studies. Moreover, 31 signal detection methods were identified in these literatures. Each signal detection method has its inherent advantages and disadvantages, resulting in different application scopes of these methods.
Conclusion: Our systematic review finds that there are variabilities in the advantages, disadvantages, and application scopes of different signal detection methods. This finding indicates that the most suitable signal detection method varies across different drug safety scenarios. Moreover, when selecting signal detection method in a particular drug safety scenario, the following factors need to be considered: purpose of research, database size, drug characteristics, adverse event characteristics, and characteristics of the relations between drugs and adverse events.
Keywords: adverse drug reaction; drug safety scenario; optimization selection; signal detection method; spontaneous reporting system.
© 2024 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons Ltd.