Anthropogenic nutrient loading has resulted in eutrophication and habitat degradation within estuaries. Study of eutrophication in estuaries has often focused on larger systems, while there has been increasing interest in understanding the governing processes in smaller systems. In this study, we incorporate both monitoring data and mechanistic modeling to improve our understanding of eutrophication in a small, shallow New England estuary. High-frequency continuous and discrete water quality samples were collected from 2018 to 2020 along a salinity gradient and at varying depth to provide temporal and spatial resolution of the system. Conditions of this estuary were simulated using the Hydrological Simulation Program - FORTRAN (HSPF) and the Water Quality Analysis Simulation Program (WASP) to develop a mechanistic, numerical fate and transport model. Our findings suggest complex hydrodynamics with three distinct salinity gradients and variability in salinity concentration upstream. Simulated and observed nutrient trends demonstrated decreasing total nitrogen concentration moving downstream and low total phosphorus concentration throughout the system. Simulated nutrient depletion and shading via macroalgae suggest their importance in similar modeling initiatives. Dynamic spatiotemporal variability in dissolved oxygen concentrations ([DO]) resulted from hydrodynamic and ecological processes such as large, rapid swings in phytoplankton. Carbonaceous biological oxygen demand was suggested to be the driver of hypoxia in surface waters, while sediment oxygen demand may drive low [DO] in the stratified, benthic waters. These findings suggest that the coordination of monitoring and modeling was important to understanding the governing mechanisms of eutrophication and hypoxia. Insights from this study could be used to support regional management strategies to increase [DO], improve water clarity, and recover indigenous seagrass beds. This work has the potential to inform future study and management of small, complex estuaries.
Keywords: Eutrophication; Hypoxia; Macroalgae; Numerical modeling; Stratification.
Published by Elsevier Ltd.