There are no blood-based biomarkers distinguishing patients with relapsing-remitting (RRMS) from secondary progressive multiple sclerosis (SPMS) although evidence supports metabolomic changes according to MS disease severity. Here machine learning analysis of serum metabolomic data stratified patients with RRMS from SPMS with high accuracy and a putative score was developed that stratified MS patient subsets. The top differentially expressed metabolites between SPMS versus patients with RRMS included lipids and fatty acids, metabolites enriched in pathways related to cellular respiration, notably, elevated lactate and glutamine (gluconeogenesis-related) and acetoacetate and bOHbutyrate (ketone bodies), and reduced alanine and pyruvate (glycolysis-related). Serum metabolomic changes were recapitulated in the whole blood transcriptome, whereby differentially expressed genes were also enriched in cellular respiration pathways in patients with SPMS. The final gene-metabolite interaction network demonstrated a potential metabolic shift from glycolysis toward increased gluconeogenesis and ketogenesis in SPMS, indicating metabolic stress which may trigger stress response pathways and subsequent neurodegeneration.
Keywords: Classification Description; Machine learning; Metabolomics; Molecular network; Transcriptomics.
© 2024 The Authors.