Antimicrobial resistance is a global health problem. In 2021, it was estimated almost half a million of multidrug-resistant tuberculosis (MDR-TB) cases. Besides, non-tuberculous mycobacteria (NTM) are highly resistant to several drugs and the emergence of fluoroquinolone (FQ) resistant M. tuberculosis (Mtb) is also a global concern making treatments difficult and with variable outcome. The aim of this study was to evaluate the activity of the FQ, DC-159a, against Mtb and NTM and to explore the cross-resistance with the currently used FQs.A total of 12 pre-extensively drug-resistant (XDR) Mtb, 2 XDR, 36 fully drug susceptible strains and 41 NTM isolates were included to estimate the in vitro activity of DC-159a, moxifloxacin (MOX) and levofloxacin (LX), using minimal inhibitory and bactericidal concentration (MIC and MBC). The activity inside the human macrophages and pulmonary epithelial cells were also determined.DC-159a was active in vitro and ex vivo against mycobacteria. Besides, it was more active than MOX/LX. Moreover, no cross-resistance was evidenced between DC-159a and LX/MOX as DC-159a could inhibit Mtb and MAC strains that were already resistant to LX/MOX.DC-159a could be a possible candidate in new therapeutic regimens for MDR/ XDR-TB and mycobacterioses cases.
© 2024. The Author(s), under exclusive licence to the Japan Antibiotics Research Association.