A new 7-(diethylamino)-2-oxo-2 H-chromene-3-carbohydrazide design to synthesize a simple Schiff-base condition. The synthesized molecules' (probe L) photophysical properties were investigated in various solvent systems and solvent-poor-solvent assays. Probe L exhibits the absorbance band at 440 nm and the emission band at 488 nm in DMSO: H2O (7:3, v/v). Further, probe L shows selective turn-off emission recognition of In3+ ions in DMSO: H2O (7:3, pH = 7.4). By Job's plot and ESI mass analysis, probe L forms a 1:2 stoichiometry complex with an estimated association constant of 4.04 × 104 M- 2 with In3+ ions. Metal induces CHEQ (chelation-caused fluorescence quenching) to reduce the intensity of probe L's emission, and the estimated quenching constant was 4.52 × 104 M- 1. The limit of detection was found to be 5.93 nM; the time response of the sensor is instantaneous, and its reversible nature was confirmed using EDTA additions. Solid substrates (test strips) were designed and tested for fast, reliable, user-friendly, and real-time sensing of In3+ ions for on-site applications. The binding mechanism of probe L with In3+ ions was investigated using 1H NMR titration and DFT/TD-DFT studies.
Keywords: Aluminum; Carbohydrazide; Cell Imaging; Chemosensor; DFT; Indium.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.