Neuro-inflammation occurs in numerous disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. However, anti-inflammatory drugs for the central nervous system have failed to show significant improvement when compared to a placebo in clinical trials. Our previous work demonstrated that stem cells from the apical papilla (SCAP) can decrease neuro-inflammation and stimulate oligodendrocyte progenitor cell differentiation. One hypothesis is that the therapeutic effect of SCAP could be mediated by their secretome, including extracellular vesicles (EV). Here, our objectives were to characterize SCAP-EV and to study their effect on microglial cells. We isolated EV from non-activated SCAP and from SCAP activated with TNFα and IFN-γ and characterized them according to their size, EV markers, miRNA and lipid content. Their ability to decrease pro-inflammatory cytokine expression in vitro and ex vivo was also assessed. We showed that the miRNA content was impacted by a pro-inflammatory environment but not their lipid composition. SCAP-EV reduced the expression of pro-inflammatory markers in LPS-activated microglial cells while their effect was limited on mouse spinal cord sections. In conclusion, we were able to isolate EV from SCAP, to show that their miRNA content was impacted by a pro-inflammatory stimulus, and to describe that SCAP-EV and not the protein fraction of conditioned medium could reduce pro-inflammatory marker expression in LPS-activated BV2 cells.
Keywords: Extracellular vesicles; Lipidomics; Mesenchymal stem cells; Neuroinflammation; Size-exclusion chromatography; miRNA.
© 2024 Published by Elsevier Ltd.