P. aeruginosa CtpA protease adopts a novel activation mechanism to initiate the proteolytic process

EMBO J. 2024 Apr;43(8):1634-1652. doi: 10.1038/s44318-024-00069-6. Epub 2024 Mar 11.

Abstract

During bacterial cell growth, hydrolases cleave peptide cross-links between strands of the peptidoglycan sacculus to allow new strand insertion. The Pseudomonas aeruginosa carboxyl-terminal processing protease (CTP) CtpA regulates some of these hydrolases by degrading them. CtpA assembles as an inactive hexamer composed of a trimer-of-dimers, but its lipoprotein binding partner LbcA activates CtpA by an unknown mechanism. Here, we report the cryo-EM structures of the CtpA-LbcA complex. LbcA has an N-terminal adaptor domain that binds to CtpA, and a C-terminal superhelical tetratricopeptide repeat domain. One LbcA molecule attaches to each of the three vertices of a CtpA hexamer. LbcA triggers relocation of the CtpA PDZ domain, remodeling of the substrate binding pocket, and realignment of the catalytic residues. Surprisingly, only one CtpA molecule in a CtpA dimer is activated upon LbcA binding. Also, a long loop from one CtpA dimer inserts into a neighboring dimer to facilitate the proteolytic activity. This work has revealed an activation mechanism for a bacterial CTP that is strikingly different from other CTPs that have been characterized structurally.

Keywords: Pseudomonas aeruginosa; Cell Wall; Peptidoglycan Hydrolases; Protease Activation; Protein Complex.

MeSH terms

  • Endopeptidases* / metabolism
  • Proteolysis
  • Pseudomonas aeruginosa* / metabolism

Substances

  • Endopeptidases