Imaging of 17O-labeled Water Using Fast T2 Mapping with T2-preparation: A Phantom Study

Magn Reson Med Sci. 2024 Mar 15. doi: 10.2463/mrms.tn.2023-0152. Online ahead of print.

Abstract

17O-labeled water is a T2-shortening contrast agent used in proton MRI and is a promising method for visualizing cerebrospinal fluid (CSF) dynamics because it provides long-term tracking of water molecules. However, various external factors reduce the accuracy of 17O-concentration measurements using conventional signal-intensity-based methods. In addition, T2 mapping, which is expected to provide a stable assessment, is generally limited to temporal-spatial resolution. We developed the T2-prepared based on T2 mapping used in cardiac imaging to adapt to long T2 values and tested whether it could accurately measure 17O-concentration in the CSF using a phantom. The results showed that 17O-concentration in a fluid mimicking CSF could be evaluated with an accuracy comparable to conventional T2-mapping (Carr-Purcell-Meiboom-Gill multi-echo spin-echo method). This method allows 17O-imaging with a high temporal resolution and stability in proton MRI. This imaging technique may be promising for visualizing CSF dynamics using 17O-labeled water.

Keywords: 17O-labeled water; T2 mapping; indirect 17O imaging; phantom study; water tracer imaging.