Here, resistive switching (RS) devices are fabricated using naturally abundant, nontoxic, biocompatible, and biodegradable biomaterials. For this purpose, 1D chitosan nanofibers (NFs), collagen NFs, and chitosan-collagen NFs are synthesized by using an electrospinning technique. Among different NFs, the collagen-NFs-based device shows promising RS characteristics. In particular, the optimized Ag/collagen NFs/fluorine-doped tin oxide RS device shows a voltage-tunable analog memory behavior and good nonvolatile memory properties. Moreover, it can also mimic various biological synaptic learning properties and can be used for pattern classification applications with the help of the spiking neural network. The time series analysis technique is employed to model and predict the switching variations of the RS device. Moreover, the collagen NFs have shown good cytotoxicity and anticancer properties, suggesting excellent biocompatibility as a switching layer. The biocompatibility of collagen NFs is explored with the help of NRK-52E (Normal Rat Kidney cell line) and MCF-7 (Michigan Cancer Foundation-7 cancer cell line). Additionally, the biodegradability of the device is evaluated through a physical transient test. This work provides a vital step toward developing a biocompatible and biodegradable switching material for sustainable nonvolatile memory and neuromorphic computing applications.
Keywords: biocompatible; biodegradable; biomemristor; nanofibers; neuromorphic computing; resistive switching.
© 2024 Wiley‐VCH GmbH.