Purpose: Patients with pancreatic ductal adenocarcinoma (PDAC) have yet to experience significant benefits from targeted therapy. Olaparib is currently the only active substance in BRCA-mutated PDACs that successfully influences the DNA repair of carcinoma cells. H2AX belongs to the histone family and is known as a part of the DNA repair system. The inhibition of γ-H2AX could lead to the inhibition of mitotically active tumor cells. Therefore, we aimed to evaluate the predictive value of the γ-H2AX in patients with PDAC.
Methods: All included patients (n = 311) received a pancreatic resection with curative intention in one of our PANCALYZE study centers. Subsequently, they were enrolled in a standardized follow-up protocol. Immunohistochemical stainings for γ-H2AX were conducted on tissue microarrays.
Results: Patients exhibiting high levels of γ-H2AX expression experience more frequent R1 resections, indicating advanced tumor stages in this subgroup. Additionally, patients with high γ-H2AX expression demonstrated significantly poorer survival compared to those with low expression (median OS: 15 vs. 25 months, p < 0.001). In multivariate analyses, high γ-H2AX expression could be identified as an independent risk factor for worse patient survival. Moreover, high γ-H2AX expression could be more frequently observed in the more aggressive basal-like subtype.
Conclusion: γ-H2AX can be characterized as a predictive biomarker for poorer patient survival. Consequently, upcoming clinical trials focused on the efficacy of targeted therapies influencing the DNA repair system and radiotherapy should evaluate γ-H2AX as a potential biomarker for therapy response. Furthermore, γ-H2AX may serve as a viable target for treatment in the future.
Keywords: Biomarker; DNA repair; H2AX; Histone; Pancreatic ductal adenocarcinoma.
© 2024. The Author(s).