Anchored-fusion enables targeted fusion search in bulk and single-cell RNA sequencing data

Cell Rep Methods. 2024 Mar 25;4(3):100733. doi: 10.1016/j.crmeth.2024.100733. Epub 2024 Mar 18.

Abstract

Here, we present Anchored-fusion, a highly sensitive fusion gene detection tool. It anchors a gene of interest, which often involves driver fusion events, and recovers non-unique matches of short-read sequences that are typically filtered out by conventional algorithms. In addition, Anchored-fusion contains a module based on a deep learning hierarchical structure that incorporates self-distillation learning (hierarchical view learning and distillation [HVLD]), which effectively filters out false positive chimeric fragments generated during sequencing while maintaining true fusion genes. Anchored-fusion enables highly sensitive detection of fusion genes, thus allowing for application in cases with low sequencing depths. We benchmark Anchored-fusion under various conditions and found it outperformed other tools in detecting fusion events in simulated data, bulk RNA sequencing (bRNA-seq) data, and single-cell RNA sequencing (scRNA-seq) data. Our results demonstrate that Anchored-fusion can be a useful tool for fusion detection tasks in clinically relevant RNA-seq data and can be applied to investigate intratumor heterogeneity in scRNA-seq data.

Keywords: CP: Genetics; CP: Systems biology.

MeSH terms

  • Algorithms*
  • RNA / genetics
  • RNA-Seq
  • Sequence Analysis, RNA / methods
  • Software*

Substances

  • RNA