Stable n-Type Perylene Derivative Ladder Polymer with Antiambipolarity for Electrically Reconfigurable Organic Logic Gates

Adv Mater. 2024 Aug;36(31):e2308823. doi: 10.1002/adma.202308823. Epub 2024 Apr 3.

Abstract

Organic electrochemical transistors (OECTs) are one of the promising building blocks to realize next-generation bioelectronics. To date, however, the performance and signal processing capabilities of these devices remain limited by their stability and speed. Herein, the authors demonstrate stable and fast n-type organic electrochemical transistors based on a side-chain-free ladder polymer, poly(benzimidazoanthradiisoquinolinedione). The device demonstrated fast normalized transient speed of 0.56 ± 0.17 ms um-2 and excellent long-term stability in aqueous electrolytes, with no significant drop in its doping current after 50 000 successive doping/dedoping cycles and 2-month storage at ambient conditions. These unique characteristics make this polymer especially suitable for bioelectronics, such as being used as a pull-down channel in a complementary inverter for long-term stable detection of electrophysiological signals. Moreover, the developed device shows a reversible anti-ambipolar behavior, enabling reconfigurable electronics to be realized using a single material. These results go beyond the conventional OECT and demonstrate the potential of OECTs to exhibit dynamically configurable functionalities for next-generation reconfigurable electronics.

Keywords: n‐type; antiambipolar; electrically reconfigurable organic logic gates; ladder‐type conjugated polymers; organic electrochemical transistors; stable.